Transient exposure of carcinoma cells to RAS/MEK inhibitors and UCN-01 causes cell death in vitro and in vivo.

نویسندگان

  • Hossein Hamed
  • William Hawkins
  • Clint Mitchell
  • Donna Gilfor
  • Guo Zhang
  • Xin-Yan Pei
  • Yun Dai
  • Michael P Hagan
  • John D Roberts
  • Adly Yacoub
  • Steven Grant
  • Paul Dent
چکیده

The present studies were initiated to determine in greater molecular detail how MEK1/2 inhibitors [PD184352 and AZD6244 (ARRY-142886)] interact with UCN-01 (7-hydroxystaurosporine) to kill mammary carcinoma cells in vitro and radiosensitize mammary tumors in vitro and in vivo and whether farnesyl transferase inhibitors interact with UCN-01 to kill mammary carcinoma cells in vitro and in vivo. Expression of constitutively activated MEK1 EE or molecular suppression of JNK and p38 pathway signaling blocked MEK1/2 inhibitor and UCN-01 lethality, effects dependent on the expression of BAX, BAK, and, to a lesser extent, BIM and BID. In vitro colony formation studies showed that UCN-01 interacted synergistically with the MEK1/2 inhibitors PD184352 or AZD6244 and the farnesyl transferase inhibitors FTI277 and R115,777 to kill human mammary carcinoma cells. Athymic mice carrying approximately 100 mm(3) MDA-MB-231 cell tumors were subjected to a 2-day exposure of either vehicle, R115,777 (100 mg/kg), the MEK1/2 inhibitor PD184352 (25 mg/kg), UCN-01 (0.2 mg/kg), or either of the drugs in combination with UCN-01. Transient exposure of tumors to R115,777, PD184352, or UCN-01 did not significantly alter tumor growth rate or the mean tumor volume in vivo approximately 15 to 30 days after drug administration. In contrast, combined treatment with R115,777 and UCN-01 or with PD184352 and UCN-01 significantly reduced tumor growth. Tumor cells isolated after combined drug exposure exhibited a significantly greater reduction in plating efficiency using ex vivo colony formation assays than tumor cells that were exposed to either drug individually. Irradiation of mammary tumors after drug treatment, but not before or during treatment, significantly enhanced the lethal effects of UCN-01 and MEK1/2 inhibitor treatment. These findings argue that UCN-01 and multiple inhibitors of the RAS-MEK pathway have the potential to suppress mammary tumor growth, and to interact with radiation, in vitro and in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interruption of the Ras/MEK/ERK signaling cascade enhances Chk1 inhibitor-induced DNA damage in vitro and in vivo in human multiple myeloma cells.

The role of the Ras/MEK/ERK pathway was examined in relation to DNA damage in human multiple myeloma (MM) cells exposed to Chk1 inhibitors in vitro and in vivo. Exposure of various MM cells to marginally toxic concentrations of the Chk1 inhibitors UCN-01 or Chk1i modestly induced DNA damage, accompanied by Ras and ERK1/2 activation. Interruption of these events by pharmacologic (eg, the farnesy...

متن کامل

Statins synergistically potentiate 7-hydroxystaurosporine (UCN-01) lethality in human leukemia and myeloma cells by disrupting Ras farnesylation and activation.

Interactions between UCN-01 and HMG-CoA reductase inhibitors (ie, statins) have been examined in human leukemia and myeloma cells. Exposure of U937 and U266 cells to minimally toxic concentrations of UCN-01 and various statins (eg, lovastatin, simvastatin, or fluvastatin) dramatically increased mitochondrial dysfunction, caspase activation, and apoptosis. Comparable effects were observed in oth...

متن کامل

Pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase/MAPK cascade interact synergistically with UCN-01 to induce mitochondrial dysfunction and apoptosis in human leukemia cells.

Interactions between the checkpoint abrogator UCN-01 and several pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase (MEK)/MAPK pathway have been examined in a variety of human leukemia cell lines. Exposure of U937 monocytic leukemia cells to a marginally toxic concentration of UCN-01 (e.g., 150 nM) for 18 h resulted in phosphorylation/activation of p42/44 MAPK. Coa...

متن کامل

Simultaneous exposure of transformed cells to SRC family inhibitors and CHK1 inhibitors causes cell death.

The present studies were initiated to determine in greater molecular detail the regulation of CHK1 inhibitor lethality in transfected and infected breast cancer cells and using genetic models of transformed fibrobalsts. Multiple MEK1/2 inhibitors (PD184352, AZD6244 (ARRY-142886)) interacted with multiple CHK1 inhibitors (UCN-01 (7-hydroxystaurosporine), AZD7762) to kill mammary carcinoma cells ...

متن کامل

LYMPHOID NEOPLASIA Disruption of Src function potentiates Chk1-inhibitor–induced apoptosis in human multiple myeloma cells in vitro and in vivo

Ras/MEK/ERK pathway activation represents an important compensatory response of human multiple myeloma (MM) cells to checkpoint kinase 1 (Chk1) inhibitors. To investigate the functional roles of Src in this event and potential therapeutic significance, interactions between Src and Chk1 inhibitors (eg, UCN-01 or Chk1i) were examined in vitro and in vivo. The dual Src/Abl inhibitors BMS354825 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2008